Operating-Envelopes-Aware Decentralized Welfare Maximization for Energy Communities

Cornell University

¹School of Electrical and Computer Engineering, Cornell University, Ithaca, NY,

Energy Communities, Operating Envelopes, and Net Metering

Energy communities: Enablers of wider DER accessibility and aggregation

An energy community is a coalition of a group of customers who pool and aggregate their DER and perform energy and monetary transactions with the DSO as a single entity behind a PCC.

(a) ISO–DSO–Community Interface.

⁽b) Energy community framework.

Dynamic operating envelopes: Time-varying **export** and **import** limits at prosumers' PCCs

Net energy metering (NEM):

Under NEM, the utility revenue meter measures the community's net consumption and assigns a buy (retail) rate π^+ if the community is net-importing, and a sell (export) rate π^- if the community is net exporting – i.e., given the NEM X parameter $\pi = (\pi^+, \pi^-)$ the community payment P_M^{π} is

$$P_{\mathcal{N}}^{\pi}(z_{\mathcal{N}}) = \pi^{+}[z_{\mathcal{N}}]^{+} - \pi^{-}[z_{\mathcal{N}}]^{-}, \text{ where } z_{\mathcal{N}} := \sum z_{i} = d_{\mathcal{N}} + \underline{r_{\mathcal{N}}}^{-}$$

Prosumer surplus: Surpluses of a community member S_i^{χ} and its benchmark under DSO S_i^{π} are $S_i^{\chi}(z_i, b_{\mathcal{N}}) := \bigcup_i (\boldsymbol{d}_i) - P^{\chi}(z_i, b_{\mathcal{N}}), \quad S_i^{\pi}(z_i) := U_i(\boldsymbol{d}_i) - P^{\pi}(z_i), \quad \forall i \in \mathcal{N}.$ payment under

Each member's consumption $d_i \in [\underline{d}_i, \overline{d}_i] \subseteq \mathbb{R}_+^K$ a net consumption $z_i \in [\underline{z}_i, \overline{z}_i] \subseteq \mathbb{R}$ are bounded.

Contributions/Summary of Results

We propose a OEs-aware, prosumer centric, and welfare-maximizing market mechanism for energy communities that aggregates individual and shared community resources under a general NEM policy. The proposed market mechanism:

- \star incorporates the DSO-imposed OEs, ensuring a network-aware community operation.
- \star guarantees surplus levels to its members higher than the maximum surplus under DSO.
- \star decentrally achieves welfare optimality.
- \star satisfies the generalized cost-causation principle.

https://www.ahmedsa.me

Ahmed S. Alahmed ¹ Guido Cavraro² Andrey Bernstein²

Usually, there is a mismatch between the intervals of peak DER imports and exports.

The un-coordinated BTM DER profiles are neither controllable nor visible by the DSO.

Dynamic operating envelopes (OEs) are proposed to enable DSOs to ensure network integrity (i.e., voltage with and thermal limits), without directly controlling BTM DER or aggregators.

 $-g_{\mathcal{N}} = d_{\mathcal{N}} - b_{\mathcal{N}}.$

Decentralized Welfare Optimality

The comm. welfare is decentrally maximized if the max. welfare under centralized operation W_N^* ,

subject to

$$\begin{aligned} \mathcal{P}_{\mathcal{N}}^{\chi} &: \underset{\{d_i\}_{i=1}^{N}, \{z_i\}_{i=1}^{N}}{\text{Maximize}} & W_{\mathcal{N}}^{\chi} := \sum_{i \in \mathcal{N}} S_i^{\chi}(z_i, b_{\mathcal{N}}) \\ &\text{subject to } S_i^{\chi}(z_i, b_{\mathcal{N}}) = U_i(d_i) - P_i^{\chi}(\cdot), \forall i \in \mathcal{N} \\ &\sum_{i \in \mathcal{N}} P^{\chi}(z_i, b_{\mathcal{N}}) = P_{\mathcal{N}}^{\pi}(z_{\mathcal{N}}) \\ &z_{\mathcal{N}} = \sum_{i \in \mathcal{N}} z_i = \sum_{i \in \mathcal{N}} \mathbf{1}^{\top} d_i - b_{\mathcal{N}} \\ &\underline{d}_i \preceq d_i \preceq d_i, \forall i \in \mathcal{N} \\ &\underline{z}_i \preceq z_i \preceq \overline{z}_i, \forall i \in \mathcal{N} \end{aligned}$$
 (nember surplus) (operator profit neutrality) (Aggregate net-consumption limits (Operating envelopes)) \end{aligned}

is achieved by the aggregate maximum surpluses of community members under the proposed market mechanism, i.e., if

 $W_{\mathcal{N}}^* = \sum S$

where $S_i^{*,\chi}(z_i^{*,\chi}, b)$ is the maximum surplus of member $i \in \mathcal{N}$ under the proposed mechanism χ , which is achieved by its optimal net consumption schedule $z_i^{*,\chi}$.

Operating-Envelope-Aware Market Mechanism

The threshold-based, OEs-aware, pricing policy $\Gamma^{\chi}(\cdot)$ (payment rule $P^{\chi}(\cdot)$) is given by the 3-tuple tariff parameter $\chi = (\pi^+, \pi^z(\boldsymbol{b}), \pi^-)$ with the order $\pi^+ \ge \pi^z(\boldsymbol{b}) \ge \pi^-$, as

$$\underbrace{\Gamma^{\chi}(\boldsymbol{b})}_{\text{Pricing rule}} = \begin{cases} \pi^{+} & , b_{\mathcal{N}} < \sigma_{1}(\boldsymbol{b}) \\ \pi^{z}(\boldsymbol{b}) & , b_{\mathcal{N}} \in [\sigma_{1}(\boldsymbol{b}), \sigma_{2}(\boldsymbol{b})] , \\ \pi^{-} & , b_{\mathcal{N}} > \sigma_{2}(\boldsymbol{b}) \end{cases}, \qquad \underbrace{P^{\chi}(z_{i}, \boldsymbol{b})}_{\text{payment rule}} = \Gamma^{\chi}(\boldsymbol{b}) \cdot z_{i}, \qquad (2)$$

where the thresholds $\sigma_1(\boldsymbol{b})$ and $\sigma_2(\boldsymbol{b})$ are computed as $(\sigma_2(\boldsymbol{b}) \geq \sigma_1(\boldsymbol{b}))$

$$\sigma_1(\mathbf{b}) := \sum_{i=1}^N \max\{\underline{z}_i + b_i, \min\{R_i^+, \overline{z}_i + b_i\}\}, \ \sigma_2(\mathbf{b}) := \sum_{i=1}^N \max\{\underline{z}_i + b_i, \min\{R_i^-, \overline{z}_i + b_i\}\}, \quad (3)$$

$$R_i^+ := \mathbf{1}^\top \max\{\underline{\boldsymbol{d}}_i, \min\{\boldsymbol{f}_i(\mathbf{1}\pi^+), \overline{\boldsymbol{d}}_i\}\}, \ R_i^- := \mathbf{1}^\top \max\{\underline{\boldsymbol{d}}_i, \min\{\boldsymbol{f}_i(\mathbf{1}\pi^-), \overline{\boldsymbol{d}}_i\}\}.$$
(4)

The price $\pi^z(\boldsymbol{b}) := \mu^*(\boldsymbol{b})$ is the solution of

 $\sum \max\{\underline{z}_i + b_i, \min\{R_i^z(\mu), \overline{z}_i + b_i\}\} = b_{\mathcal{N}}, \text{ where } R_i^z(\mu) := \mathbf{1}^\top \max\{\underline{d}_i, \min\{f_i(\mathbf{1}\mu), \overline{d}_i\}\}.$ (5)

Market mechanism structural properties: (1) Resource and OEs aware pricing (2) Thresholdbased structure partitioning the range of b_N into 3 zones (3) Non-discriminatory pricing (4) Supply/Demand balance (5) Endogenously-determined market roles (6) Scalable and explainable.

Lang Tong¹

²Power System Engineering Center, National Renewable Energy Laboratory, Golden, CO

$$S_i^{*,\chi}(z_i^{*,\chi}, \boldsymbol{b}),$$
 (1)

 $i \in \mathcal{N}$ member solves the following surplus maximization program: $(\boldsymbol{d}_{i}^{*,\chi}, z_{i}^{*,\chi}) = \operatorname{argmax} S_{i}^{\chi}(\boldsymbol{d}_{i}, z_{i}) := U_{i}(\boldsymbol{d}_{i}) - P^{\chi}(z_{i}, \boldsymbol{b})$

subject to $z_i := \mathbf{1}^\top d_i - b_i, \quad \underline{d}_i \preceq d_i \preceq \overline{d}_i, \quad \underline{z}_i \leq z_i \leq \overline{z}_i.$ (6) **Lemma:** The optimal decisions obey by a two-threshold ($\theta_1^i := \mathbf{1}^\top d_i^{\Gamma^{\chi}} - \overline{z}_i, \theta_2^i := \mathbf{1}^\top d_i^{\Gamma^{\chi}} - \underline{z}_i$) policy that partitions b_i into three zones as shown in the community member optimal response panel. The consumption $d_i^{\Gamma} = \max\{\underline{d}_i, \min\{f_i(\mathbf{1}\Gamma(\mathbf{b}), \overline{d}_i\}\}.$

Under the proposed market mechanism, every $i \in \mathcal{N}$ member achieves a surplus no less than its benchmark, i.e., $S_i^{*,\chi}(z_i^{*,\chi}, \boldsymbol{b}) \geq S_i^{*,\pi}(b_i)$.

Theorem 2: Decentralized welfare optimality under χ

Under the OEs-aware market mechanism, the aggregate surplus of community members achieves the community maximum welfare, i.e., $\sum_{i \in \mathcal{N}} S_i^{*,\chi}(z_i^{*,\chi}, \boldsymbol{b}) = W_{\mathcal{N}}^*(\boldsymbol{b})$.

The proposed OEs-aware market mechanism satisfies the **generalized cost-causation principle**: (1) profit-neutrality, (2) equity, (3) individual rationality, (4) monotonicity, (5) cost-causation penalty, and (6) cost mitigation reward.

Simulation settings:

N = 20 residential households.

All households have flexible consumption.

17/20 members have rooftop solar.

The figures show community member monthly surplus gain (%) over benchmark and monthly bill (\$), both under two OEs $-\underline{z}_i = \overline{z}_i = 3$ kW (left) and $-\underline{z}_i = \overline{z}_i = \infty$ (right). The bar chart shows the percentage of time under which $sign(z_i^{*,\chi}) \neq sign(z_N^*)$.

2023 Sixth Workshop on Autonomous Energy Systems, National Renewable Energy Laboratory, Golden, CO

Community Member Problem

Given $b_{\mathcal{N}}$, the community pricing and payment rules are announced, and accordingly, every

 $oldsymbol{d}_i {\in} \mathbb{R}_+^K, z_i {\in} \mathbb{R}$

Theoretical Findings

Theorem 1: Individual rationality

Theorem 3: Cost-causation conformity

Simulation Results

DSO NEM X has ToU buy rate π_{ON}^+ = 0.40/kWh and $\pi_{OFF}^+ = 0.20$ /kWh, and the sell rate π^- is at the wholesale price. Quadratic concave $U(\cdot)$.

asa278@cornell.edu